889 research outputs found

    Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

    Full text link
    [EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 +/- 4.3% and 76.2 +/- 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681S116209Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.xLucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yHoroba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/47078

    Partial order label decomposition approaches for melanoma diagnosis

    Get PDF
    Melanoma is a type of cancer that develops from the pigment-containing cells known as melanocytes. Usually occurring on the skin, early detection and diagnosis is strongly related to survival rates. Melanoma recognition is a challenging task that nowadays is performed by well trained dermatologists who may produce varying diagnosis due to the task complexity. This motivates the development of automated diagnosis tools, in spite of the inherent difficulties (intra-class variation, visual similarity between melanoma and non-melanoma lesions, among others). In the present work, we propose a system combining image analysis and machine learning to detect melanoma presence and severity. The severity is assessed in terms of melanoma thickness, which is measured by the Breslow index. Previous works mainly focus on the binary problem of detecting the presence of the melanoma. However, the system proposed in this paper goes a step further by also considering the stage of the lesion in the classification task. To do so, we extract 100 features that consider the shape, colour, pigment network and texture of the benign and malignant lesions. The problem is tackled as a five-class classification problem, where the first class represents benign lesions, and the remaining four classes represent the different stages of the melanoma (via the Breslow index). Based on the problem definition, we identify the learning setting as a partial order problem, in which the patterns belonging to the different melanoma stages present an order relationship, but where there is no order arrangement with respect to the benign lesions. Under this assumption about the class topology, we design several proposals to exploit this structure and improve data preprocessing. In this sense, we experimentally demonstrate that those proposals exploiting the partial order assumption achieve better performance than 12 baseline nominal and ordinal classifiers (including a deep learning model) which do not consider this partial order. To deal with class imbalance, we additionally propose specific over-sampling techniques that consider the structure of the problem for the creation of synthetic patterns. The experimental study is carried out with clinician-curated images from the Interactive Atlas of Dermoscopy, which eases reproducibility of experiments. Concerning the results obtained, in spite of having augmented the complexity of the classification problem with more classes, the performance of our proposals in the binary problem is similar to the one reported in the literature

    Visual processing speed in hemianopia patients secondary to acquired brain injury: a new assessment methodology

    Get PDF
    Producción CientíficaBackground: There is a clinical need to identify diagnostic parameters that objectively quantify and monitor the effective visual ability of patients with homonymous visual field defects (HVFDs). Visual processing speed (VPS) is an objective measure of visual ability. It is the reaction time (RT) needed to correctly search and/or reach for a visual stimulus. VPS depends on six main brain processing systems: auditory-cognitive, attentional, working memory, visuocognitive, visuomotor, and executive. We designed a new assessment methodology capable of activating these six systems and measuring RTs to determine the VPS of patients with HVFDs. Methods: New software was designed for assessing subject visual stimulus search and reach times (S-RT and R-RT respectively), measured in seconds. Thirty-two different everyday visual stimuli were divided in four complexity groups that were presented along 8 radial visual field positions at three different eccentricities (10o, 20o, and 30o). Thus, for each HVFD and control subject, 96 S- and R-RT measures related to VPS were registered. Three additional variables were measured to gather objective data on the validity of the test: eye-hand coordination mistakes (ehcM), eye-hand coordination accuracy (ehcA), and degrees of head movement (dHM, measured by a head-tracker system). HVFD patients and healthy controls (30 each) matched by age and gender were included. Each subject was assessed in a single visit. VPS measurements for HFVD patients and control subjects were compared for the complete test, for each stimulus complexity group, and for each eccentricity. Results: VPS was significantly slower (p < 0.0001) in the HVFD group for the complete test, each stimulus complexity group, and each eccentricity. For the complete test, the VPS of the HVFD patients was 73.0% slower than controls. They also had 335.6% more ehcMs, 41.3% worse ehcA, and 189.0% more dHMs than the controls. Conclusions: Measurement of VPS by this new assessment methodology could be an effective tool for objectively quantifying the visual ability of HVFD patients. Future research should evaluate the effectiveness of this novel method for measuring the impact that any specific neurovisual rehabilitation program has for these patients

    Optical Buffer 1:16

    Get PDF
    This document is a manual describing the functionality and the operation of the Optical Buffer 1:16 (OB). The OB was specially designed to repeat optical signals during the TileCal Read-Out drivers (ROD) production. The data generated in one Optical Multiplexer Board (OMB) 6U prototypes were repeated with two OB in order to inject data simultaneously to four RODs

    Compensación de radiación dispersa en radiografía digital a través del aprendizaje automático: resultados preliminares

    Get PDF
    Actas de: CASEIB 2020: XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica, 25–27 Nov, 2020 (congreso virtual).La dispersión de los rayos X reduce significativamente la resolución de contraste de la imagen en radiografía digital de tórax. La estrategia convencional para la reducción de la radiación dispersa es el uso de rejillas antidifusoras que, aunque mejoran la calidad de la imagen, aumentan la dosis de radiación absorbida por el paciente y plantean problemas en técnicas no estándar. En este trabajo, proponemos un método de corrección de la radiación dispersa basado en técnicas de aprendizaje profundo, que adopta una red neuronal convolucional de arquitectura U-net con 4 bloques tanto en el codificador como en el decodificador. Debido a la falta de pares de adquisiciones reales con y sin rejilla antidifusoras, se realizaron simulaciones de Monte Carlo para generar los datos de entrenamiento. El presente estudio demuestra el potencial del método propuesto, con un error inferior al 5%.Este trabajo ha sido financiado por el Ministerio de Ciencia, Innovación y Universidades (Instituto de Salud Carlos III, proyecto DTS17/00122; Agencia Estatal de Investigación, proyecto DPI2016-79075-R-AEI/FEDER, UE), cofinanciado por Fondos de la Unión Europea (FEDER), "A way of making Europe". Además, ha sido financiado por el Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020 en el marco del Convenio Plurianual Comunidad de Madrid- Universidad Carlos III de Madrid (proyecto DEEPCT-CM-UC3M). El CNIC está financiado por el Ministerio de Ciencia, Innovación y Universidades y la fundación PRO-CNIC y es un centro de excelencia Severo Ochoa (SEV-2015-0505)

    Continuous electro-scrubbers for the removal of perchloroethylene: Keys for selection

    Get PDF
    In this work, the removal of perchloroethylene (PCE) using continuous-operation electro-scrubbers is evaluated. Two types of electro-scrubbers were made by combining a jet mixer or a packed absorption column with a single flow-cell. The absorbent/electrolyte is recirculated between both devices, being electrolyzed in the cell and retaining the pollutant in the scrubber. In both scrubber’s system, an important amount of PCE was absorbed into the electrolyte and the application of electric current significantly improved the results, highlighting the efficiency of the integration of technologies. Tests in the absence of absorbent/electrolyte confirmed the reactivity of the PCE in the wet gas phase. The jet-mixer system turned out to be more efficient than the packed column, yielding better results both in absorption and electro-absorption modes, and reaching a PCE removal greater than 90%. Meanwhile, the addition of cobalt mediators did not improve the electro-scrubbing efficiency as initially expected: in the case of the packed column electro-scrubber there were no changes while in the case of the jet mixer surprisingly it is generated a negative effect

    Treatment of ex-situ soil-washing fluids polluted with petroleum by anodic oxidation, photolysis, sonolysis and combined approaches

    Get PDF
    In this research, the treatment of soil spiked with petroleum was studied using a surfactant-aided soil-washing (SASW) process followed by sonolysis (US), photolysis and boron doped diamond electrolysis (BDD-electrolysis) for washing liquid treatment. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing completely the petrochemical compounds by using dosages about 5 g of extracting surfactant (sodium dodecyl sulfate (SDS)) per kg of soil. The main characteristics of the effluents produced in this soil remediation technology as well as the efficiency of the treatment (US, photolysis and BDD-electrolysis) depend on the dosage of SDS. Depollution of the effluents (degradation and mineralization of the organic matter) is related to the reduction in size of micelles formed by SDS and petroleum, and it depends on the treatment used. US and photolysis were inefficient decontamination processes, while BDD-electrolysis favors the complete depletion of micelles. However, the intensification of the efficiency was attained by synergic degradation effects when UV light irradiation and US were coupled with BDD-electrolysis, US/BDD-electrolysis and photo/BDD-electrolysis, respectively. Sulfate (coming from SDS) ions play an important role during the BDD-electrolysis, US/BDD-electrolysis and photo/BDD-electrolysis because persulfate and persulfate radicals are produced (by sulfate activation applying US or photolysis), improving the efficiency of the processes

    Effectiveness and costs of phototest in dementia and cognitive impairment screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess and compare the effectiveness and costs of Phototest, Mini Mental State Examination (MMSE), and Memory Impairment Screen (MIS) to screen for dementia (DEM) and cognitive impairment (CI).</p> <p>Methods</p> <p>A phase III study was conducted over one year in consecutive patients with suspicion of CI or DEM at four Primary Care (PC) centers. After undergoing all screening tests at the PC center, participants were extensively evaluated by researchers blinded to screening test results in a Cognitive-Behavioral Neurology Unit (CBNU). The gold standard diagnosis was established by consensus of expert neurologists. Effectiveness was assessed by the proportion of correct diagnoses (diagnostic accuracy [DA]) and by the kappa index of concordance between test results and gold standard diagnoses. Costs were based on public prices and hospital accounts.</p> <p>Results</p> <p>The study included 140 subjects (48 with DEM, 37 with CI without DEM, and 55 without CI). The MIS could not be applied to 23 illiterate subjects (16.4%). For DEM, the maximum effectiveness of the MMSE was obtained with different cutoff points as a function of educational level [k = 0.31 (95% Confidence interval [95%CI], 0.19-0.43), DA = 0.60 (95%CI, 0.52-0.68)], and that of the MIS with a cutoff of 3/4 [k = 0.63 (95%CI, 0.48-0.78), DA = 0.83 (95%CI, 0.80-0.92)]. Effectiveness of the Phototest [k = 0.71 (95%CI, 0.59-0.83), DA = 0.87 (95%CI, 0.80-0.92)] was similar to that of the MIS and higher than that of the MMSE. Costs were higher with MMSE (275.9 ± 193.3€ [mean ± sd euros]) than with Phototest (208.2 ± 196.8€) or MIS (201.3 ± 193.4€), whose costs did not significantly differ. For CI, the effectiveness did not significantly differ between MIS [k = 0.59 (95%CI, 0.45-0.74), DA = 0.79 (95%CI, 0.64-0.97)] and Phototest [k = 0.58 (95%CI, 0.45-0.74), DA = 0.78 (95%CI, 0.64-0.95)] and was lowest for the MMSE [k = 0.27 (95%CI, 0.09-0.45), DA = 0.69 (95%CI, 0.56-0.84)]. Costs were higher for MMSE (393.4 ± 121.8€) than for Phototest (287.0 ± 197.4€) or MIS (300.1 ± 165.6€), whose costs did not significantly differ.</p> <p>Conclusion</p> <p>MMSE is not an effective instrument in our setting. For both DEM and CI, the Phototest and MIS are more effective and less costly, with no difference between them. However, MIS could not be applied to the appreciable percentage of our population who were illiterate.</p

    The Genome-wide Methylation Profile of CD4+ T Cells From Individuals With Human Immunodeficiency Virus (HIV) Identifies Distinct Patterns Associated With Disease Progression

    Get PDF
    Background: Human genetic variation-mostly in the HLA and CCR5 regions-explains 25% of the variability in progression of HIV infection. However, it is also known that viral infections can modify cellular DNA methylation patterns. Therefore, changes in the methylation of CpG islands might modulate progression of HIV infection. Methods: 85 samples were analyzed: 21 elite controllers (EC), 21 HIV-infected subjects before combination antiretroviral therapy (cART) (viremic, 93,325 HIV-1 RNA copies/ml) and under suppressive cART (cART, median of 17 months, <50 HIV-1 RNA copies/ml), and 22 HIV-negative donors (HIVneg). We analyzed the methylation pattern of 485,577 CpG in DNA from peripheral CD4+ T lymphocytes. We selected the most differentially methylated gene (TNF) and analyzed its specific methylation, mRNA expression, and plasma protein levels in 5 individuals before and after initiation of cART. Results: We observed 129 methylated CpG sites (associated with 43 gene promoters) for which statistically significant differences were recorded in viremic vs HIVneg, 162 CpG sites (55 gene promoters) in viremic vs cART, 441 CpG sites (163 gene promoters) in viremic vs EC, but none in EC vs HIVneg. The TNF promoter region was hypermethylated in viremic vs HIVneg, cART, and EC. Moreover, we observed greater plasma levels of TNF in viremic individuals than in EC, cART, and HIVneg. Conclusions: Our study shows that genome methylation patterns vary depending on HIV infection status and progression profile and that these variations might have an impact on controlling HIV infection in the absence of cART
    corecore